Skip to main content
Voyage AI provides cutting-edge embedding and rerankers. Using voyageai API requires voyageai package, which can be installed using pip install voyageai. Voyage AI embeddings are used to generate embeddings for text data. The embeddings can be used for various tasks like semantic search, clustering, and classification. You also need to set the VOYAGE_API_KEY environment variable to use the VoyageAI API. Supported models are:
  • voyage-context-3
  • voyage-3.5
  • voyage-3.5-lite
  • voyage-3
  • voyage-3-lite
  • voyage-finance-2
  • voyage-multilingual-2
  • voyage-law-2
  • voyage-code-2
  • voyage-multimodal-3.5 (multimodal - supports text, images, and video)
Multimodal Model: voyage-multimodal-3.5 supports text, images, and video inputs. It outputs 1024-dimensional embeddings by default, configurable via the output_dimension parameter (256, 512, 1024, 2048). See the VoyageAI multimodal embeddings documentation for more details.
Supported parameters (to be passed in create method) are:
ParameterTypeDefault ValueDescription
namestrNoneThe model ID of the model to use. Supported models: voyage-3, voyage-3-lite, voyage-3.5, voyage-3.5-lite, voyage-context-3, voyage-finance-2, voyage-multilingual-2, voyage-law-2, voyage-code-2, voyage-multimodal-3.5
input_typestrNoneType of the input text. Default to None. Other options: query, document.
truncationboolTrueWhether to truncate the input texts to fit within the context length.
output_dimensionintNoneOutput embedding dimension. Only supported by voyage-multimodal-3.5. Valid options: 256, 512, 1024 (default), 2048.
Usage Example:

Multimodal Example

The voyage-multimodal-3.5 model can embed text alongside images. You can use image URLs, file paths, or PIL Image objects: